Analysis of Microstructures and Phase Transition Phenomena in One-Dimensional, Non-Linear Elasticity by Convex Optimization
نویسندگان
چکیده
We propose a general method to determine the theoretical microstructure in one dimensional elastic bars whose internal deformation energy is given by non-convex polynomials. We use non-convex variational principles and Young measure theory to describe the optimal energetic configuration of the body. By using convex analysis and classical characterizations of algebraic moments, we can formulate the problem as a convex optimal control problem. Therefore, we can estimate the microstructure of several models by using non-linear programming techniques. This method can determine the minimizers or the minimizing sequences of non-convex, variational problems used in one-dimensional, non-linear elasticity.
منابع مشابه
Weak Solutions for One-dimensional Non-convex Elastodynamics
We explore local existence and properties of classical weak solutions to the initial-boundary value problem of a one-dimensional quasilinear equation of elastodynamics with non-convex stored-energy function, a model of phase transitions in elastic bars proposed by Ericksen [19]. The instantaneous formation of microstructures of local weak solutions is observed for all smooth initial data with i...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملNon-Laminate Microstructures in Monoclinic-I Martensite
We study the symmetrised rank-one convex hull of monoclinic-I martensite (a twelve-variant material) in the context of geometrically-linear elasticity. We construct sets of T3s, which are (non-trivial) symmetrised rank-one convex hulls of three-tuples of pairwise incompatible strains. In addition, we construct a fivedimensional continuum of T3s and show that its intersection with the boundary o...
متن کاملSolving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms
Sugeno-Weber family of t-norms and t-conorms is one of the most applied one in various fuzzy modelling problems. This family of t-norms and t-conorms was suggested by Weber for modeling intersection and union of fuzzy sets. Also, the t-conorms were suggested as addition rules by Sugeno for so-called $lambda$–fuzzy measures. In this paper, we study a nonlinear optimization problem where the fea...
متن کاملDAMAGE IDENTIFICATION BY USING MODAL EXPANSION AND TOPOLOGY OPTIMIZATION IN THREE DIMENSIONAL ELASTICITY PROBLEMS
In this paper, topology optimization is utilized for damage detection in three dimensional elasticity problems. In addition, two mode expansion techniques are used to derive unknown modal data from measured data identified by installed sensors. Damages in the model are assumed as reduction of mass and stiffness in the discretized finite elements. The Solid Isotropic Material with Penalization (...
متن کامل